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Scaling theory of self-avoiding crumpled membranes in solution
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We study the scaling theory of the thermodynamics of membrane solutions at finite concentrations. We use
the monodisperse continuous Gaussian membrane model wittbady excluded volume interaction. Without
using renormalization group theory, the radius of gyration and osmotic pressure, etc. at finite concentration can
be calculated in lower dimensions$1063-651X97)12009-9

PACS numbegps): 05.70.Fh, 05.26:y

I. INTRODUCTION tion group methodRG) is valid only forD=1 (i.e., a poly-

. . . mer and low concentration solution. Whén+ 1, a multilo-
The statistical thermodynamics of fluctuating surfaces hag operator product expansion methf{7] has recently

attracted much attention in recent years with applications ifhgen developed to show the validity of the RG method and
many areas of physics such as supermembrane thi&piy  of scaling laws.

high energy physics, interface in soft condensed matter phys- Motivated by the general scaling theory of a polymer so-
ics, and membrane problem in biophysi$. Since a mem- lution [8], to go beyond the low concentration regime of
brane is a generalization of polymer, many properties of aalidity of the RG method, we are thus led to search for a
membrane can be obtained by generalizing polymer theongeneral scaling relatiof@] of the scaling theory of a self-
One of these studies is the scaling relation. For exampleavoiding tethered surface at finite concentration in solution,
Flory-Huggins theory predicts a?» chain contribution to 1N & good solvent. For example, the low concentration second
the solution energy where is the concentration and the  Virial coefficient is obtained in Refl5] by using the RG

interaction strength. The “scaling” theory of de Gennes and{.nethOd' IndS§q. I”I A,ﬁgs.lngtqur n:et?otd,dthlg ht'gh concen;[_ra
co-workerg3] shows a fractional power law, such&¥*, of lon seécond virial coetlicient IS calculated. Further properties
; - “ " such as radius of gyration, screening length, and structure
the interaction energy. In a “good” solvent, the mean square L : . .
A . > oy actor for finite concentration solution are obtained.
end-to-end vector distance displa§R)~L<" with v=23/5

th dcally. A 4 solvent that th | h This paper is organized as follows. In order to illustrate
eoretically. A good solvent means that the polymer Nag,e memprane scaling theory with finite concentration in so-
strong attractive energy with the solvent and is dissolve

ution, we start from the scaling relations for a single mem-

over a wide range of temperatures. The excluded volumg ane The scaling relations for a single tethered surface are
interaction is responsible for the swelling behavior of thegescriped in Sec. II. The scaling relations for a finite concen-

overall chain dimensions in a good solvent. . tration solution are presented in Sec. IIl. Our results are con-
Quite recently, Nelson and co-workel$,5] have intro-  ¢luded in Sec. IV.

duced a two-dimensional2D) continuum model ind-D
space to investigate the flexible surface of fixed connectivity 1l. SCALING RELATIONS FOR SINGLE MEMBRANE
in a solution, in a good solvent. Hetkis the dimension of

external space arid is the dimension of internal space. With an infinite dilute solution. The interesting properties of mem-

this model, a critical linel* (D) =4D/(2— D) appearsinthe 306 solution are sensitive to its long range properties. It is
(d,D) plane. The upper critical dimensiatf is finite only  therefore adequate to represent the membrane with the famil-
when 0<D<2. The self-avoidance becomes negligibledin  jar Gaussian membrane modél5]. The theoretical study of
spatial dimensions whenevel™>d*. The most important 3 self-avoiding (SA) polymerized membrane is centered
scaling property is the radius of the gyration exponent around a model of tethered self-avoiding manifolds directly
which is defined byRg~L". When the self-avoidance is inspired by the Edward model for polymers. In the general-
negligible, the resulting “ideal” exponent is=(2—D)/2.  ized Edward model, the 2D surfaces are generalized to an
For a stretched manifold, i.e., the manifold overfills the spacéntrinsically D-dimensional manifold, i.e.D-dimensional
and self-avoidance stretches the manifelds equal to 1. In connected networks. The nodes of tRisdimensional con-
the self-avoiding regimey is equal to (2-D)/2+O(¢), nected network are labeled by internal continuous coordi-
wheree =4D — (2—D)d. However, the direct renormaliza- nates xe R°® and are embedded in an external-
dimensional space with position vecit(x) e RY. The parti-
tion function is then obtained by summing over all configu-
* Author to whom correspondence should be addressed. Electroniations of the surfacé(x), to which a term accounting for
address: dyyang@r309.iams.sinica.edu.tw the excluded volume interaction has been added,

Let us consider the simplest case of a single membrane in
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with an elastic Gaussian term and a self-avoidmbody 6 potential with excluded volume parametey>0. The internal
D-dimensional “volume™V is represented bjxP|.
Let us perform the rescalings (x') =agr (x) andx’ =bgx. The partition function, Eq(1), can then be rewritten as

L, 1 b5 [iogLP o (oF\2 1Al gyt TR
ZzﬂfDriex;{—zK =z fo d®x’ > )—n—,—an an N ' I e O R (CAY
: 0 j=1
N

0 0 a=1 ¢9XE:1 i

0 i=1
1 b3 [P 0 (ﬁF’ 2] 71
X Df/ex ——K—f dPx’ — . 2
[iof ' F{ 27 a5 Jo azl X} @

As we propose the following dimensionless quantiti®s X p(n~1(2-D)d2-nDy) @
=bl/l, ap=all, N=L/I, a=b? D)2 Eq. (2) corresponds

to a membrane with L’=bN, K’=1, and v, wheref is an unknown function. FdNb=1, Eq.(7) is spe-
:b(n—l)(Z—D)d/Z—nDl(n—2)D—(n—1)d Vy. Here n meansn- cialized to

body é interaction.N is the polymerization index in each one
dimension. The Kuhn lengthis defined byl=K . This
partition function can then be displayed as a )

function of two dimensionless variablesNb and
b(n—l)(Z—D)d/Z—nDl(n—2)D—(n—1)dvn such that

Ré= 12N2-Pf (y,| (n=2)D—(n=1)d\nD—(n—1)(2-D)di2)

which is the fundamental scaling relation for membrane di-

mension at infinite dilute solution. From E€) [5], we de-
Z=Z(bN, v, b~ D(2-D)di2=nDj(n-2)D—(n-1)d) - (3)  fine the dimensionless interaction parameters

A similar transformation can be applied to the radius of gy- ol 2P~ (" DANI2=D)2](n=1iin/(n=1)][2D/(2=D)]~d},

ration of a membrane. In order to calculate the radius of

gyration of a membrane, one needs the averaged square diithout the N dependencez~N° leads to a multicritical
tance[10] line d*(n,D) in the (d,D) plane, i.e.,

C(Xq,%2) ={[F(X1) = F(X2)]%) n 2D n
d*(n,D)= -
n-12-D n-1

:f DF[F(xl)—F(xz)]ZP/ U Df P), 4
where Dy, is the Gaussian Hausdorff dimension. With this

critical line d*, the & value in the RG theory is defined as
e=2nD—(n—1)(2—D)d. With this ¢ value and thed,D)
plane, we can investigate the radius of gyration. When the
self-avoidance is negligible, i.ez;—0, the radius of gyration

Dy,

such that the generalized radius of gyratjdd] can be de-
fined, in analogy to polymers, by the integration of the aver
aged square distance

1 approachesR3=1PL27Pf(1,0)~L?” where v=(2—D)/2.

Ré:Lﬁ f d®x; dP%,C(X1,%,), (5 However, in the self-avoidance regimes1, the corre-

sponding power law iR:=1PL2"Pz*~12" where v=(2

where the probability distribution is given by —D)/2+0(e) [7]. With z~L"P~("=1)(-D)d2" e obtain

the powerx=[1nD—(n—1)(2—D)d/2]O(e). Now we
1 ° 5 can consider the special case of two-body interaction2,
P=exp -3 KJO d”x and the radius of gyration can be simplified to
12b~Y(Nb) ~2f(Nb, v,b4~4"3 =9 for D=1. For an infinite
1 s o X dilute solution,b=N"1, i.e., b=(L/1)"%, R can be re-
Tnr bn iHl d Xijﬂl SUFOG)—F(xa)) - () duced to IPL2 Pf(p, | "IN2P~d(2=D)2) - From this argu-
ment, we find that the dimensionless interaction paraneter
Since the numerator and denominator in E4). have the can be expressed in terms of the critical dimensth
same factoDf, the generalized radius of gyration satisfies=4D/(2—D) and is denoted byz=N2P~d(-D)2-d,
the scaling relation =N@* ~d@2-D)/2~d},  \Whend>d*, the effective interac-
5 tion parameter is small, i.ezi—0 for N—oo. Then the radius
RG=1°N"2Pb™2"Pf(Nh,»,|("~2P~(n~1d of gyration R scales agPL2"Pf(1,0)~L?", wherev=(2

%(ar)Z

a=1 07Xa
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—D)/2 andf(1,0)~1; while ford<d*, z—0 when the po- In the case of a three-body interaction, a similar result for
lymerization indexN—O0, i.e., short chain or small mem- O(e) is obtained in Ref[11] by using the multilocal opera-
brane, yield$ (1,2)~1+ O(z) and the radius of gyratioRZ  tor product expansion RG method, i.6Q(e)=a/2(ad,
scales at°L2 P[1+0(z)]. In the regimed<d*, the effec- +b)+O(e?), whered.=3/(2—D). a andb are the expan-
tive interaction parameter diverges, i.@-% for N—o, sion coefficients of the renormalization constant @f) and
and the self-avoidance is fully relevant. Recall tR& dis-  the coupling constant, respectively.

plays a power law dependence Nrfor N—o. This implies

thatRZ=1?N2"P{z*+ O(z"')} for x>x' andz>1. The cor-

responding power ok is obtained by the definitiorRé Ill. SCALING RELATIONS AT FINITE CONCENTRATION

=|D|E22__DD)72XNJ:2”, where v=(2-D)/2+0O(e). W'tf In this section we show the basic scaling relation for the

z~L (d*—d), we have x=[4/(2-D)(d osmotic pressure. The RG scaling results of a low concen-

[—7]d)]0(8), whereO(e) is obtained by Kardar and Nelson tration membrane solution are also obtained by Duplantier
as [5].

Let us consider the case of membranes of dimension
_ ) LPXLP in a volumeV. The partition function for thep
2d* + 237927 V20 (24 d* [4)IT (3 +d* /4) membrane is given by

&

O(e)=

p N 1 & e 8 a0\ 1 P n -1
zp=vp(al'_[1i_]'[0 fVDrai)exp[—zK azl Sk S ( ( )) — 5 Vn > L[l oleij];[1 ST (X)) =T 0 (X)]

0 a=1 2 a,a’ =1
X’

2 -1
} . 9

The volume is rescaled 4>~P)2 | =9 and the variable change in E) admits the following scaling relation:

D

PN A 1 & ey ar 4 (X)
};[1 iljo varai)eXF{_zKaEl d XEl( IXq )

0 a

Zp: (b(D—Z)/Zl )pdzp( NDb, and(n—l)(Z—D)IZ—nDl (n—Z)D—(n—l)d'Vl —dbd(Z— D)/Z). (10)

The grand partition function is defined vig, as

oo

ke p —d(2-D)/2;d\p
E=E Z,\ =E (\b %) Zp(Nb,and(n—l)(z—D)/z—nD|(n—2)D—d(n—1)'V|—dbd(Z—D)/Z)
p=o0 P! p=0 p!
=E()\b_d(2_D)’2Id,Nb, and(n—l)(Z—D)/Z—nD|(n—2)D—d(n—1),V|—dbd(Z—D)IZ), (11)

where the fugacity, =ef* and u is the chemical potential. The averaged number of membrdpés,in the volumeV is
generated by the grand partition function

e
=

9 - :fl()\bfd(ZfD)/Zld’Nb’and(nfl)(ZfD)/27nD|(n72)Dfd(nfl)’V|7dbd(27D)/2). (12)

In
(P=A —¢

We may invert the last equation into
)\b—d(Z—D)/Zld:fz(<p>,Nb’ and(n—l)(Z—D)/Z—nDl(n—2)D—d(n—1),V|—dbd(Z—D)/Z). (13

The osmotic pressure is defined via the grand partition function and obeys the scaling relation

wV

I<B_T:f3(<p>’Nb' y, bd(n=1)(2=D)/2=nD| (n=2)D=d(n-1) \/| ~dpd(2-D)/2) (14)
where f5 is an unknown function with arguments. For an infinite dilute solution, the interaction between different
membranes may be ignored; we obtaill=3;_,1/p!(\% U2 PI2)P ZP(Np,pU(n D(2=D)2mnD (n=2)D=d(n=1)y, )
=exp{\%~9@"DV2z 1 for c—0. With this grand partition function, the classical result is obtained,#¥/kgT=(p), in the

low concentration limit. The corresponditiig is proportional ta(p). Since(p) andV1~%%2-P)2 gre extensive variables, we
use the intensive ratiop)/VI~9p9(2~P)2 a5 the expansion variable in the osmotic pressure and obtain

mV (p) oD din oD
kB_T:<p>f” Vrdbd(sz)/z’Nb’an(n 2)D—d(n-1)pyd(n—1)(2-D)/2-nD | (15)

To express Eq(15) in terms of concentration, we may define the membrane mass concentration as
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_ Ma(p)N
c=

W 18

whereM , is the unit molecular weight\, is Avagadro’s number, and is the volume. Replacingp) by c, one obtains

d

T _ CNa Nal Cbl—d(Z—D)/Zi Nb. p.| ("=2)D=d(n-1)pd(n—1)(2-D)/2-nD (17)

kT~ MaN ™| M4 Nb' " '
For Nb=1, Eq.(17) is recast into the basic scaling relation for the osmotic pressure:

T cN
kB_T: MAQ f_(Nl9cNA2=D)2=1/p\p 4, |(N=2)D—d(n=1)\nD—d(n-1)(2-D)/2) (18)
|
A. Limits of scaling function f, 7/kgT=(cNA/MAN)X*1, For sufficiently high concentra-
In this section, we show the low and high concentrationtion Solution,c—c, a given node of a membrane can no

limits of the osmotic pressure. longer determine which nodes belong to that membrane or

The intensive variables in E4L8) can be redefined by the Others. Hencem/kgT=(cNa/MaN)X* is N independent
general parameters, i.€X=N,l9%cNI-D"2=1/\  andY and the power is equal to;=1/[d(2—D)/2—1]. The cor-
=y, | ("-2)P-d(n-1\D-d(-1)2-D)2  \yhich govern the responding scaling relation is proportional

' d _ d
nonideality behavior of the solution thermodynamicst0 I"m/kgT=[(Na/Ma)cl"]d(2—D)/[d(2—D)—-2] for

(N—). When the excluded volume effect is negligible, Yn—0 andc—<. Note that this scaling relation is inde-
i.e., Y<1, the perturbation expansion in paramefeis per- pendent. The critical concentration that is a demarcation be-

missible and gives tween the low concentration and high concentration regimes
7 Ny is defined asX=(Np/Mp)chl9 NIZD)2"1_1: je. the
= {f_(X)+ Y (X)+O(Y?)}. (19 good solution demarcation is Ni/Ma)c*I9~N R;®
ka MAN ! ! ~ Nl-wd . . .
=N . The power law of osmotic pressure in the critical
The random walk membrane model successfully describegoncentration regime is expressed by
membranes under “ideal” or theta conditions where the sec- N
.. .. . . - . - o™ A
ond virial coefficient is vanished. In the “theta” condition, ——=——g
i.e., Y=0, only the leading term of Eq19) survives. At low keT ~MaN
concentration, i.e.X<1, we may expand the osmotic pres-
sure in terms of concentrationr/kgT=(cNpy/MaN){1  With the choice ofy so that the argumenXY" involves
+Xf7T,1(Y)+O(X2)}. For a high concentration solutioX,  c*/c, i.e., the exponent foN is equal tovd— 1, one obtains
>1, f,ois assumed to have a power law form that givesthe single variable equation of state

LXYY), (20)

o NAC NA _ _ _ _ _ _ _ _ _
kB_T:MAN g”(M_ACNdU 1jd[ 4, | (=2)D—d(n-1)][vD~d(2-D)/2J[nD~d(n—1)(2-D)/2] | 21)

with g_(0)=1. For dilute solution, i.e.(NAl%M ) c<(Nl%M,)c*, Eq.(21) is expanded in terms of concentration

ar NAC NAC 2 d d NAC
o T v (n=2)D—(n-1)d1[vD—d(2-D)/2J/[nD-d(n-1)(2-D)2l g’ (Q) 4 - - - = 4 24 ...
kBT MAN (MAN l N [an ] gﬂ'(o) MAN AZ(O)C ’
(22)
which provides the second virial coefficient as
N 2
Az(o)zld(M_i Nvd72[an(n72)D7(n7l)d][vad(ZfD)/2]/[and(n71)(27D)/2]g;7(0)+,_, ] (23)

To consider the special case of two-body interactioss2, we find that the second virial coefficient is equal to
19(NA/M 2) 2N~ 2 | ~d]@v=d(4=d)g’ (0) for polymer D=1 and I9(Nx/M A)2N"2[ 1,1 ~912g’ (0) for membrane
D=2. At low concentration, the osmotic pressure can be calculated by using the RG mg&th@dir method makes the
extension to higher concentration available. In the regimec*, the argument of . in the equation of state is large, the
power law form is expressed as

d X
T NaC [Nl CNvd—l(V |(n—2)D—<n—1)d[uD—D(z—D)/z]/[nD—d(n—l)(z—D)/z])
ksT MAN |\ M, n )
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For very high concentration membrane solution, a node on a single membrane cannot be distinguished between nodes
belonging to distant parts of its membrane or others. The osmotic pressigpends o and v, only, not onL. Therefore,
the exponent oN is equal to zero. We obtain the scaling relation
T NA vd/(vd—1)
_N(_) |d/(ud—1)cud/<ud—1)(Vn|(n—z)D—(n—1)d)[uD—d(2—D)/2]/[nD—d(n—1)<2—D)/2] U(vd—1)
kgT (Mp

Finally, the osmotic pressure of two-body interaction; 2, takes the form

T
~ W=D (N, JM ) = Dol (v, | = d)(20=d)/(4=d) U(wd—1)

kgT

for polymerD=1 and

vd/(vd—1)
a NA
Nld/(vd—l)( Cvd/(vd—l)[vzl—d]U/Z 1(vd—1)

kgT Ma

for membraneD =2.

B. Membrane size at finite concentration

In this section, we investigate the radius of gyration of the single “labeled” membrane in solution of concertration
We define the probability distribution functio@.(R,L|v,,c) for the end-to-end vectdr of an extra single membrane
(a=0) in a solution of concentratioo as

PN L O [ar,)\2
GC<R;L|vn,c>=vp“( I 11 fVDm)ad(r*o<x1>—r*o<xz>—R>exp[—§KaZo d°x (—)

0 a=1 \ IXa

l P n n—-1 p N
o 2 | a2 5d(ra<xj>—raf<xn>>[(ﬂ II fDr*m
: a,a’' =0 i=1 j=1 a=01i=0 JV
12 e 2 (o
Xex;{—z KCZO , dDXa§=:1 ((9—)(a) ] ) (24)

Change the variables of E4) and setb=N"1, we can rewrite Eq(24) as
GC(R, L| vy ,C) — f(<p>, and(n—l)(Z—D)/Z—nDl (n—2)—(n—1)d,N b,b(Z_D)/2| _1R,Vbd(2_D)/2| —d), (25)

wheref is an unknown function with arguments. The generalized radius of gyration is obtained by following the procedures
from Eq. (4) to Eq.(8) and yields

Ré,C: I ZN—ZDb—Z—D'F(<p>! Nb, and(n—l)(Z—D)/Z—nDl (r‘l—2)D—d(r‘|—l)’V| —dbd(Z—D)IZ). (26)

For Nb=1, Eq. (26) is expanded with an intensive variable that is the ratio between extensive varighleand
V|~ dpd(2-D)/2.

~ NA
Ré,c=|2N2_Df _A|dCNd(2—D)/2—l’VnNnD—d(n—l)(2—D)/2|(n—2)D—d(n—1) _ (27)

With Eq. (27), we may consider the limiting cases. At low concentratien0 or X— 0, the expansion dRé’c in terms ofX
yields Ré,C= (23+I2N2*Df1(0,Y)><X+--- , where the leading term is the single membrane radius of gyration. When we
neglect the excluded volume effect, the expansiorRéfC in terms of Y generates the scaling reIaticRéczlzNZ*D{l
+f,(X,0)XY+---}. Taking into account of the limiY>1, i.e., large excluded volume effedt,has an overall power law

dependence of*. The scaling ansatz of the generalized radius of gyration is a product of a single membrane radius of gyration
with a correction term, i.e.,
Rczs,c= R&gr2(XRE) =12N2"Pfa(Y) gra(X[ fra(Y)]¥2) = 12N2~PY*{gg2(0) — XYY Ure(0)[+0(c?)}.

In a good solution, at low concentratioﬁéC is expanded as
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|2N2U(V |(n72)D7d(nfl))(2v+D72)/[and(nfl)(27D)/2]
n
x{ng(O)_ (NA/MA)IdCNdvfl( an(n72)D7d(nfl))[dv7d(27D)/2]/[and(nfl)(27D)/2]|g|’?2(0)| +O(C2)}.

When the membrane concentration increases considerably, nodes on a given membrane experience an environment tha
becomes progressively dominated by nodes on other membranes. Thus, the membranes must find themselves in a thete
environment ag—oe. In this limit, the argument o2 in Réc becomes large, and it obeys the power law with exporént

Hence, ax—, the radius of gyratiortRéC becomes

|2N2Y( p, | (2D —d(n=1))(2u+D=2)/[nD-d(n-1)(2-D)/2]
n
X[(NA/M A)C|deu— 1]x’( v (n—Z)D—d(n—1)){[dv—d(2—D)/2]/[nD—d(n—l)(2—D)/2]}_

Since the membrane has overall Gaussian dimensions, the expondhtsoequal toD. Consequently, this gives' = (D
—2v)/(dv—1). When we consider the special case of two-body interactien?, we find that the radius of gyration
R&. is equal tol2N[(N/M p)cld]dm2v/vd=1)(y, | ~d)(4v+2)/(4-d)+[(2vd=d)/(4=d)]1-20)/(vd=1) for polymer D=1 and to
|2N2[(NA/MA)Cld](272gv)/(vdfl)(vzl 7d)v/2+(v/2)d(272v)/(vdfl) for membraneD = 2.

C. Screening length

The intramolecular excluded volume interaction is screened in a more concentrated polymer solution where the concept of
screening lengtl is introduced. This ideal may be generalized to a membrane solution. Sis@length, it must be scaled
in the same manner as all length sca(@"})c. This implies the general scaling relation

R(ZB'C|—2:(§|—1)2:N2—D]< %C|de(2—D)/2—1,Vn|(n—2)D—(n—1)dNnD—d(n—1)(2—D>/2 ' (28)
A

For a bad solutiony,—0 andc— o, Eq.(28) obeys the power law formg ~1)2=N2"PX*a, which is independent dfl. The
corresponding powerx, is equal to (2-D)/[d(2—D)/2—1] and the screening length¢ is proportional to
I[(NA/M »)cl¥9]2~D)1d2=D)=2] " On the other hand, when considering a good solutiém,1, we find that the screening
length ¢~ 1)? is equal toN?~Pf 2(Y) X g.2(Xf.2(Y)¥?) and is proportional tdRZ. In this good solution, the membrane
dimension varies al??. We obtain the power that is ¢2-D—2)/[nD—d(n—1)(2—D)/2] and the general scaling relation
becomes

(&~ H2=N2"(v,]| (n—Z)D—d(n—1))(2u+D—z)/[nD—d(n—1)(2—D)/2]g§2

X

% dpdo—1 (n—2)D—d(n—1)y[dv—d(2—D)/2)/[nD—d(n—1)(2—D)/2]
v cl®N (vpl ) )
A

Increasing the concentration, i.&.3>1 andc—«, we have an analogous result for
(§|—1)22N2U(V |(n—z)D—d(n—l))(2v+D—2)/[nD—d(n—1)(2—D)/z]
- n
X

% cldNdv—1( v, (n=2)D=d(n—1))[dv—d(2-D)/2J[nD—d(n—1)(2-D)/2]

X
Ma

in a good solution. This equation is independentNofor ~ for polymer D=1 and &=I[(Np/Mp)cld] V(=D
high concentration solution. Hence we have the poxyer (v, | ~9)("V4¥(xd=1) for membraneD = 2.
—2v/(dv—1), which gives the scaling relation for screening

length
D. Scattering function-structure factor
N —vl(dv—1) X . . .
£=1 A C|d) Light scattering and coherent elastic neutron scattering
Ma studies are measured by the dynamic structure factor, which
X (| (1=2)D=d(n=1)(1-v=D/2)/{dv—1)[nD—d(n—1)(2-D)/2]} is defined as
n .
L° b ° o

In the special case of two-body interactiom=2, la)=( > fo d leo d"x,
we have the screening length ae

E=I[(NAIM el 787D (] ~e) (L7200 d= D =] XeXP{iQ[Fa(Xl)—far(Xz)]}>, (29
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where the angular brackets denote the grand canonical efio study the limiting case, we adopt the intensive variables

semble andy is the momentum. The choice bi=N"1 pro-  in Sec. lllA. For Y<1, f, can be expanded in a Taylor
vides the general scaling relation series in terms ofY, leading to the perturbation expansion
(@)= fqoX,IGNE P2 Y £ (X, IgNE D) ... For

Y—0 andc>c*, 1(q) is equal togy o(lgN@~212X?) and is
N, independent oN. So we have the concentration expansion
I(q)="fq e |deNA(2-D)2-1 g\ (2-D)2, of I(q), ie, |(q).=gq’0{|q[(Né{|\/.IA)c|d]2—D/2—d(;—D)}
A =0q,0(£9). Expanding[gq0(£9)] " in powers ofg®, the
final spectrum id (q) =k/[1+ (£q)2] wherek is a constant,
| (N72)D—d(n=H\nD-d(n=1)(2=D)/2) (300 for c>c*. ForY>1,1(q) reduces to

% dv—1jd+[dv—d(2—D)/2][(n—2)D—d(n—1)}/[nD—d(n—1)(2-D)/2] [dv—d(2—D)/2])/[nD—d(n—1)(2—-D)/2]
Jq M, cN v ,

q NI 1+[v—(2-D)/2][(n—2)D—d(n—1)]/[nD—d(n—1)(2—D)/2] V[v—(Z—D)/Z]/[nD—d(n—1)(2— D)/2]
n .

For c>c*, 1(q) is N independent, the structure dynamic calculated by using the RG method. Our method provides an

factor is reduced td)(q)zgg[(qg)l*d”’“]. easy way to investigate the thermodynamic scaling relation-
ship. The high concentration power law form is obtainable
IV. CONCLUSION rather than using the RG method, for example, osmotic pres-

sure. Further application of this method to the charged poly-
In conclusion, we have developed a general scaling relamerized membrane is under investigation.

tion of scaling theory of the self-avoidance crumpled mem-
brane. The method of obtaining the scaling relation of the ACKNOWLEDGMENTS
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