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Scaling theory of self-avoiding crumpled membranes in solution
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We study the scaling theory of the thermodynamics of membrane solutions at finite concentrations. We use
the monodisperse continuous Gaussian membrane model with ann-body excluded volume interaction. Without
using renormalization group theory, the radius of gyration and osmotic pressure, etc. at finite concentration can
be calculated in lower dimensions.@S1063-651X~97!12009-8#

PACS number~s!: 05.70.Fh, 05.20.2y
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I. INTRODUCTION

The statistical thermodynamics of fluctuating surfaces
attracted much attention in recent years with application
many areas of physics such as supermembrane theory@1# in
high energy physics, interface in soft condensed matter p
ics, and membrane problem in biophysics@2#. Since a mem-
brane is a generalization of polymer, many properties o
membrane can be obtained by generalizing polymer the
One of these studies is the scaling relation. For exam
Flory-Huggins theory predicts ac2n chain contribution to
the solution energy wherec is the concentration andn the
interaction strength. The ‘‘scaling’’ theory of de Gennes a
co-workers@3# shows a fractional power law, such asc9/4, of
the interaction energy. In a ‘‘good’’ solvent, the mean squ
end-to-end vector distance displays^R2&'L2v with v53/5
theoretically. A good solvent means that the polymer h
strong attractive energy with the solvent and is dissolv
over a wide range of temperatures. The excluded volu
interaction is responsible for the swelling behavior of t
overall chain dimensions in a good solvent.

Quite recently, Nelson and co-workers@4,5# have intro-
duced a two-dimensional~2D! continuum model ind-D
space to investigate the flexible surface of fixed connecti
in a solution, in a good solvent. Hered is the dimension of
external space andD is the dimension of internal space. Wit
this model, a critical lined* (D)54D/(22D) appears in the
(d,D) plane. The upper critical dimensiond* is finite only
when 0,D,2. The self-avoidance becomes negligible ind
spatial dimensions wheneverd.d* . The most important
scaling property is the radius of the gyration exponentv,
which is defined byRG'Lv. When the self-avoidance i
negligible, the resulting ‘‘ideal’’ exponent isv5(22D)/2.
For a stretched manifold, i.e., the manifold overfills the sp
and self-avoidance stretches the manifold;v is equal to 1. In
the self-avoiding regime,v is equal to (22D)/21O(«),
where«54D2(22D)d. However, the direct renormaliza
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tion group method~RG! is valid only for D51 ~i.e., a poly-
mer! and low concentration solution. WhenDÞ1, a multilo-
cal operator product expansion method@6,7# has recently
been developed to show the validity of the RG method a
of scaling laws.

Motivated by the general scaling theory of a polymer s
lution @8#, to go beyond the low concentration regime
validity of the RG method, we are thus led to search fo
general scaling relation@9# of the scaling theory of a self
avoiding tethered surface at finite concentration in soluti
in a good solvent. For example, the low concentration sec
virial coefficient is obtained in Ref.@5# by using the RG
method. In Sec. III A, using our method, the high concent
tion second virial coefficient is calculated. Further propert
such as radius of gyration, screening length, and struc
factor for finite concentration solution are obtained.

This paper is organized as follows. In order to illustra
the membrane scaling theory with finite concentration in
lution, we start from the scaling relations for a single me
brane. The scaling relations for a single tethered surface
described in Sec. II. The scaling relations for a finite conc
tration solution are presented in Sec. III. Our results are c
cluded in Sec. IV.

II. SCALING RELATIONS FOR SINGLE MEMBRANE

Let us consider the simplest case of a single membran
an infinite dilute solution. The interesting properties of me
brane solution are sensitive to its long range properties.
therefore adequate to represent the membrane with the fa
iar Gaussian membrane model@4,5#. The theoretical study of
a self-avoiding ~SA! polymerized membrane is centere
around a model of tethered self-avoiding manifolds direc
inspired by the Edward model for polymers. In the gener
ized Edward model, the 2D surfaces are generalized to
intrinsically D-dimensional manifold, i.e.,D-dimensional
connected networks. The nodes of thisD-dimensional con-
nected network are labeled by internal continuous coo
nates xPRD and are embedded in an externald-
dimensional space with position vectorrW(x)PRd. The parti-
tion function is then obtained by summing over all config
rations of the surfacerW(x), to which a term accounting fo
the excluded volume interaction has been added,
ic
3346 © 1997 The American Physical Society
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with an elastic Gaussian term and a self-avoidingn-body d potential with excluded volume parameternn.0. The internal
D-dimensional ‘‘volume’’V is represented byuxDu.

Let us perform the rescalingsr 8(x8)5a0r (x) andx85b0x. The partition function, Eq.~1!, can then be rewritten as
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As we propose the following dimensionless quantitiesb0

5b/ l , a05a/ l , N5L/ l , a5b(22D)/2, Eq. ~2! corresponds
to a membrane with L85bN, K851, and nn8
5b(n21)(22D)d/22nDl (n22)D2(n21)d nn . Here n means n-
bodyd interaction.N is the polymerization index in each on
dimension. The Kuhn lengthl is defined byl 5K21/D. This
partition function can then be displayed as
function of two dimensionless variablesNb and
b(n21)(22D)d/22nDl (n22)D2(n21)dnn such that

Z5Z~bN,nnb~n21!~22D !d/22nDl ~n22!D2~n21!d!. ~3!

A similar transformation can be applied to the radius of g
ration of a membrane. In order to calculate the radius
gyration of a membrane, one needs the averaged square
tance@10#

C~x1 ,x2!5^@rW~x1!2rW~x2!#2&

5E DrW@rW~x1!2rW~x2!#2PY S E DrW PD , ~4!

such that the generalized radius of gyration@10# can be de-
fined, in analogy to polymers, by the integration of the av
aged square distance

RG
2 5

1

L2D E dDx1 dDx2C~x1 ,x2!, ~5!

where the probability distribution is given by

P5expH 2
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dDxi )
j 51

n21

dd
„rW~xj !2rW~xn!…J . ~6!

Since the numerator and denominator in Eq.~4! have the
same factorDrW, the generalized radius of gyration satisfi
the scaling relation

RG
2 5 l 2N22Db222Df ~Nb,nnl ~n22!D2~n21!d
-
f
is-

-

3b~n21!~22D !d/22nD!, ~7!

where f is an unknown function. ForNb51, Eq.~7! is spe-
cialized to

RG
2 5 l 2N22Df ~nnl ~n22!D2~n21!dNnD2~n21!~22D !d/2!,

~8!

which is the fundamental scaling relation for membrane
mension at infinite dilute solution. From Eq.~8! @5#, we de-
fine the dimensionless interaction parameterz as

nnl ~n22!D2~n21!dN@~22D !/2#~n21!$@n/~n21!#@2D/~22D !#2d%.

Without the N dependence,z;N0 leads to a multicritical
line d* (n,D) in the (d,D) plane, i.e.,

d* ~n,D !5
n

n21

2D

22D
5

n

n21
DH ,

whereDH is the Gaussian Hausdorff dimension. With th
critical line d* , the « value in the RG theory is defined a
«52nD2(n21)(22D)d. With this « value and the (d,D)
plane, we can investigate the radius of gyration. When
self-avoidance is negligible, i.e.,z→0, the radius of gyration
approachesRG

2 5 l DL22Df (1,0);L2y where y5(22D)/2.
However, in the self-avoidance regime,z@1, the corre-
sponding power law isRG

2 5 l DL22Dzx;L2y where y5(2
2D)/21O(«) @7#. With z;LnD2(n21)(22D)d/2, we obtain
the power x5@1/nD2(n21)(22D)d/2#O(«). Now we
can consider the special case of two-body interaction,n52,
and the radius of gyration can be simplified
l 2b21(Nb)22f (Nb,nnb(d24)/2l 2d) for D51. For an infinite
dilute solution,b5N21, i.e., b5(L/ l )21, RG

2 can be re-
duced to l DL22Df (nnl 2dN2D2d(22D)/2). From this argu-
ment, we find that the dimensionless interaction parametz
can be expressed in terms of the critical dimensiond*
54D/(22D) and is denoted byz5N2D2d(22D)/2l 2dnn

5N(d* 2d)(22D)/2l 2dnn . Whend.d* , the effective interac-
tion parameter is small, i.e.,z→0 for N→`. Then the radius
of gyration RG

2 scales asl DL22Df (1,0);L2y, wherey5(2
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2D)/2 and f (1,0);1; while for d,d* , z→0 when the po-
lymerization indexN→0, i.e., short chain or small mem
brane, yieldsf (1,z)'11O(z) and the radius of gyrationRG

2

scales asl DL22D@11O(z)#. In the regimed,d* , the effec-
tive interaction parameter diverges, i.e.,z→` for N→`,
and the self-avoidance is fully relevant. Recall thatRG

2 dis-
plays a power law dependence onN for N→`. This implies
thatRG

2 5 l 2N22D$zx1O(zx8)% for x.x8 andz@1. The cor-
responding power ofx is obtained by the definitionRG

2

5 l DL22Dzx;L2v, where v5(22D)/21O(«). With
z;L (22D)/2(d* 2d), we have x5@4/(22D)(d*
2d)#O(«), whereO(«) is obtained by Kardar and Nelso
@7# as

O~«!5
«

2d* 1232d* /2p1/2G~21d* /4!/G~ 1
2 1d* /4!

.

In the case of a three-body interaction, a similar result
O(«) is obtained in Ref.@11# by using the multilocal opera
tor product expansion RG method, i.e.,O(«)5a/2(adc
1b)1O(«2), wheredc53/(22D). a andb are the expan-
sion coefficients of the renormalization constant ofrW(x) and
the coupling constant, respectively.

III. SCALING RELATIONS AT FINITE CONCENTRATION

In this section we show the basic scaling relation for t
osmotic pressure. The RG scaling results of a low conc
tration membrane solution are also obtained by Duplan
@5#.

Let us consider the case ofp membranes of dimension
LD3LD in a volume V. The partition function for thep
membrane is given by
erent

e
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The volume is rescaled asbd(22D)/2 l 2d and the variable change in Eq.~2! admits the following scaling relation:

Zp5~b~D22!/2l !pdZp~Nb,nnbd~n21!~22D !/22nDl ~n22!D2~n21!d,Vl2dbd~22D !/2!. ~10!

The grand partition function is defined viaZp as

J5 (
p50

`
Zplp

p!
5 (

p50

`
~lb2d~22D !/2l d!p

p!
Zp~Nb,nnbd~n21!~22D !/22nDl ~n22!D2d~n21!,Vl2dbd~22D !/2!

5J~lb2d~22D !/2l d,Nb,nnbd~n21!~22D !/22nDl ~n22!D2d~n21!,Vl2dbd~22D !/2!, ~11!

where the fugacityl5ebm and m is the chemical potential. The averaged number of membranes,^p&, in the volumeV is
generated by the grand partition function

^p&5l
] ln J

]l
5 f 1~lb2d~22D !/2l d,Nb,nnbd~n21!~22D !/22nDl ~n22!D2d~n21!,Vl2dbd~22D !/2!. ~12!

We may invert the last equation into

lb2d~22D !/2l d5 f 2~^p&,Nb,nnbd~n21!~22D !/22nDl ~n22!D2d~n21!,Vl2dbd~22D !/2!. ~13!

The osmotic pressure is defined via the grand partition function and obeys the scaling relation

pV

kBT
5 f 3~^p&,Nb,nnbd~n21!~22D !/22nDl ~n22!D2d~n21!,Vl2dbd~22D !/2!, ~14!

where f 3 is an unknown function with arguments. For an infinite dilute solution, the interaction between diff
membranes may be ignored; we obtainJ5(p50

` 1/p!(l l db2d(22D)/2)p Z1
p(Nb,bd(n21)(22D)/22nDl (n22)D2d(n21)nn)

5exp$lldb2d(22D)/2Z1%, for c→0. With this grand partition function, the classical result is obtained, i.e.,pV/kBT5^p&, in the
low concentration limit. The correspondingf 3 is proportional tô p&. Since^p& andVl2dbd(22D)/2 are extensive variables, w
use the intensive ratiôp&/Vl2dbd(22D)/2 as the expansion variable in the osmotic pressure and obtain

pV

kBT
5^p& f pS ^p&

Vl2dbd~22D !/2 ,Nb,nnl ~n22!D2d~n-1!bd~n21!~22D !/22nDD . ~15!

To express Eq.~15! in terms of concentration, we may define the membrane mass concentration as
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c5
MA^p&N

NAV
, ~16!

whereMA is the unit molecular weight,NA is Avagadro’s number, andV is the volume. Replacinĝp& by c, one obtains

p

kBT
5

cNA

MAN
f pS NAl d

MA
cb12d~22D !/2

1

Nb
,Nb,nnl ~n22!D2d~n21!bd~n21!~22D !/22nDD . ~17!

For Nb51, Eq. ~17! is recast into the basic scaling relation for the osmotic pressure:

p
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5

cNA

MAN
f p~NAl dcNd~22D !/221/MA ,nnl ~n22!D2d~n21!NnD2d~n21!~22D !/2!. ~18!
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A. Limits of scaling function f p

In this section, we show the low and high concentrat
limits of the osmotic pressure.

The intensive variables in Eq.~18! can be redefined by th
general parameters, i.e.,X5NAl dcNd(22D)/221/MA and Y
5nnl (n22)D2d(n21)NnD2d(n21)(22D)/2, which govern the
nonideality behavior of the solution thermodynami
(N→`). When the excluded volume effect is negligibl
i.e., Y!1, the perturbation expansion in parameterY is per-
missible and gives

p

kbT
5

cNA

MAN
$ f p,0~X!1Y fp,2~X!1O~Y2!%. ~19!

The random walk membrane model successfully descr
membranes under ‘‘ideal’’ or theta conditions where the s
ond virial coefficient is vanished. In the ‘‘theta’’ condition
i.e., Y50, only the leading term of Eq.~19! survives. At low
concentration, i.e.,X!1, we may expand the osmotic pre
sure in terms of concentrationp/kBT5(cNA /MAN)$1
1X fp,1(Y)1O(X2)%. For a high concentration solution,X
@1, f p,0 is assumed to have a power law form that giv
n

es
-

s

p/kBT5(cNA /MAN)Xx1. For sufficiently high concentra
tion solution,c→`, a given node of a membrane can n
longer determine which nodes belong to that membrane
others. Hence,p/kBT5(cNA /MAN)Xx1 is N independent
and the power is equal tox151/@d(22D)/221#. The cor-
responding scaling relation is proportion
to l dp/kBT5@(NA /MA)cld#d(22D)/@d(22D)22# for
nn→0 andc→`. Note that this scaling relation isn inde-
pendent. The critical concentration that is a demarcation
tween the low concentration and high concentration regim
is defined asX5(NA /MA)c0* l d Nd(22D)/221;1; i.e., the
good solution demarcation is (NA /MA)c* l d;N RG

2d

5N12yd. The power law of osmotic pressure in the critic
concentration regime is expressed by

p

kBT
5

NAc

MAN
gp~XYy!. ~20!

With the choice ofy so that the argumentXYy involves
c* /c, i.e., the exponent forN is equal toyd21, one obtains
the single variable equation of state
to

e

p

kBT
5

NAc

MAN
gpS NA

MA
cNdy21l d@nnl ~n22!D2d~n21!#@yD2d~22D !/2#/@nD2d~n21!~22D !/2#D , ~21!

with gp(0)51. For dilute solution, i.e.,~NAl d/MA)c!(NAl d/MA)c* , Eq. ~21! is expanded in terms of concentration

p

kBT
5

NAc

MAN
1S NAc

MAND 2

l dNyd@nnl ~n22!D2~n21!d#@yD2d~22D !/2#/@nD2d~n21!~22D !/2#gp8 ~0!1•••5
NAc

MAN
1A2~0!c21••• ,

~22!

which provides the second virial coefficient as

A2~0!5 l dS NA

MA
D 2

Nyd22@nnl ~n22!D2~n21!d#@yD2d~22D !/2#/@nD2d~n21!~22D !/2#gp8 ~0!1••• . ~23!

To consider the special case of two-body interaction,n52, we find that the second virial coefficient is equal
l d(NA /MA)2Nyd22@n2l 2d# (2y2d)/(42d)gp8 (0) for polymer D51 and l d(NA /MA)2Nyd22@n2l 2d#y/2gp8 (0) for membrane
D52. At low concentration, the osmotic pressure can be calculated by using the RG method@5#. Our method makes the
extension to higher concentration available. In the regimec@c* , the argument ofgp in the equation of state is large, th
power law form is expressed as

p

kBT
;

NAc

MAN S NAl d

MA
cNyd21~nnl ~n22!D2~n21!d@yD2D~22D !/2#/@nD2d~n21!~22D !/2#! D x

.
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For very high concentration membrane solution, a node on a single membrane cannot be distinguished betwe
belonging to distant parts of its membrane or others. The osmotic pressurep depends onc andnn only, not onL. Therefore,
the exponent ofN is equal to zero. We obtain the scaling relation

p

kBT
;S NA

MA
D yd/~yd21!

l d/~yd21!cyd/~yd21!~nnl ~n22!D2~n21!d!@yD2d~22D !/2#/@nD2d~n21!~22D !/2# 1/~yd21!.

Finally, the osmotic pressure of two-body interaction,n52, takes the form

p

kBT
; l d/~yd21!~NA /MA!yd/~yd21!cyd/~yd21!@nnl 2d#~2y2d!/~42d! 1/~yd21!

for polymerD51 and

p

kBT
; l d/~yd21!S NA

MA
D yd/~yd21!

cyd/~yd21!@n2l 2d#v/2 1/~yd21!

for membraneD52.

B. Membrane size at finite concentration

In this section, we investigate the radius of gyration of the single ‘‘labeled’’ membrane in solution of concentrationc.
We define the probability distribution functionGc(R,Lunn ,c) for the end-to-end vectorR of an extra single membran

(a50) in a solution of concentrationc as

Gc~R;Lunn ,c!5Vp11S )
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3expF2
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a50

p E
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a51

D S ]rWa

]xa
D 2G J 21

. ~24!

Change the variables of Eq.~24! and setb5N21, we can rewrite Eq.~24! as

Gc~R,Lunn ,c!5 f ~^p&,nnbd~n21!~22D !/22nDl ~n22!2~n21!d,Nb,b~22D !/2l 21R,Vbd~22D !/2l 2d!, ~25!

where f is an unknown function with arguments. The generalized radius of gyration is obtained by following the proc
from Eq. ~4! to Eq. ~8! and yields

RG,c
2 5 l 2N22Db222D f̃ ~^p&,Nb,nnbd~n21!~22D !/22nDl ~n22!D2d~n21!,Vl2dbd~22D !/2!. ~26!

For Nb51, Eq. ~26! is expanded with an intensive variable that is the ratio between extensive variables^p& and
Vl2dbd(22D)/2:

RG,c
2 5 l 2N22D f̃ S NA

MA
l dcNd~22D !/221,nnNnD2d~n21!~22D !/2l ~n22!D2d~n21!D . ~27!

With Eq. ~27!, we may consider the limiting cases. At low concentrationc→0 or X→0, the expansion ofRG,c
2 in terms ofX

yields RG,c
2 5RG

2 1 l 2N22D f̄ 1(0,Y)3X1••• , where the leading term is the single membrane radius of gyration. Whe
neglect the excluded volume effect, the expansion ofRG,c

2 in terms of Y generates the scaling relationRG,c
2 5 l 2N22D$1

1 f̄ 2(X,0)3Y1•••%. Taking into account of the limitY@1, i.e., large excluded volume effect,f̄ has an overall power law
dependence ofYx. The scaling ansatz of the generalized radius of gyration is a product of a single membrane radius of g
with a correction term, i.e.,

RG,c
2 5RG

2 gR2~XRG
d !5 l 2N22Df R2~Y!gR2„X@ f R2~Y!#d/2

…5 l 2N22DYx$gR2~0!2XYyugR28 ~0!u1O~c2!%.

In a good solution, at low concentration,RG,c
2 is expanded as
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l 2N2y~nnl ~n22!D2d~n21!!~2y1D22!/@nD2d~n21!~22D !/2#

3$gR2~0!2~NA /MA!l dcNdy21~nnl ~n22!D2d~n21!!@dy2d~22D !/2#/@nD2d~n21!~22D !/2#ugR28 ~0!u1O~c2!%.

When the membrane concentration increases considerably, nodes on a given membrane experience an environ
becomes progressively dominated by nodes on other membranes. Thus, the membranes must find themselves
environment asc→`. In this limit, the argument ofgR2 in RG,c

2 becomes large, and it obeys the power law with exponentx8.
Hence, asc→`, the radius of gyrationRG,c

2 becomes

l 2N2y~nnl ~n22!D2d~n21!!~2y1D22!/@nD2d~n21!~22D !/2#

3@~NA /MA!cldNdy21#x8~nnl ~n22!D2d~n21!!$@dy2d~22D !/2#/@nD2d~n21!~22D !/2#%.

Since the membrane has overall Gaussian dimensions, the exponent onN is equal toD. Consequently, this givesx85(D
22y)/(dy21). When we consider the special case of two-body interaction,n52, we find that the radius of gyration
RG,c

2 is equal to l 2N@(NA /MA)cld# (122y/yd21)(n2l 2d)(4y12)/(42d)1@(2yd2d)/(42d)#(122y)/(yd21) for polymer D51 and to
l 2N2@(NA/MA)cld# (222gv)/(yd21)(n2l 2d)y/21(y/2)d(222y)/(yd21) for membraneD52.

C. Screening length

The intramolecular excluded volume interaction is screened in a more concentrated polymer solution where the co
screening lengthj is introduced. This ideal may be generalized to a membrane solution. Sincej is a length, it must be scale
in the same manner as all length scales,^R2&c . This implies the general scaling relation

RG,c
2 l 225~j l 21!25N22Df S NA

MA
cldNd~22D !/221,nnl ~n22!D2~n21!dNnD2d~n21!~22D !/2D . ~28!

For a bad solution,nn→0 andc→`, Eq. ~28! obeys the power law form (j l 21)25N22DXxa, which is independent ofN. The
corresponding powerxa is equal to (22D)/@d(22D)/221# and the screening lengthj is proportional to
l @(NA /MA)cld# (22D)/@d(22D)22#. On the other hand, when considering a good solution,Y@1, we find that the screening
length (j l 21)2 is equal toN22Df j2(Y)3gj2„X fj2(Y)d/2

… and is proportional toRG
2 . In this good solution, the membran

dimension varies asN2y. We obtain the power that is (2y1D22)/@nD2d(n21)(22D)/2# and the general scaling relatio
becomes

~j l 21!25N2y~nnl ~n22!D2d~n21!!~2y1D22!/@nD2d~n21!~22D !/2#gj2

3S NA

MA
cldNdy21~nnl ~n22!D2d~n21!!@dy2d~22D !/2#/@nD2d~n21!~22D !/2#D .

Increasing the concentration, i.e.,Y@1 andc→`, we have an analogous result for

~j l 21!2>N2y~nnl ~n22!D2d~n21!!~2y1D22!/@nD2d~n21!~22D !/2#

3F NA

MA
cldNdy21~nnl ~n22!D2d~n21!!@dy2d~22D !/2#/@nD2d~n21!~22D !/2#Gxb
g

ing
ich
in a good solution. This equation is independent ofN for
high concentration solution. Hence we have the powerxb5
22y/(dy21), which gives the scaling relation for screenin
length

j5 l S NA

MA
cldD 2y/~dy21!

3~nnl ~n22!D2d~n21!~12y2D/2!/$dy21!@nD2d~n21!~22D !/2#%.

In the special case of two-body interaction,n52,
we have the screening length

j5 l @~NA /MA!cld#2y/~yd21!~n2l 2d!~122y!/@~yd21!~42d!#
for polymer D51 and j5 l @(NA /MA)cld#2y/(yd21)

(n2 l 2d)(21/4)y/(yd21) for membraneD52.

D. Scattering function-structure factor

Light scattering and coherent elastic neutron scatter
studies are measured by the dynamic structure factor, wh
is defined as

I ~q!5K (
a,a8

E
0

LD

dDx1E
0

LD

dDx2

3exp$ iq@rWa~x1!2rWa8~x2!#%L , ~29!
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where the angular brackets denote the grand canonica
semble andq is the momentum. The choice ofb5N21 pro-
vides the general scaling relation

I ~q!5 f qS NA

MA
l dcNd~22D !/221,lqN~22D !/2,

nnl ~n22!D2d~n21!NnD2d~n21!~22D !/2D . ~30!
ic

el
m
th
he
h
ra
o
b

u

r-
y
k,

s

n-To study the limiting case, we adopt the intensive variab
in Sec. III A. For Y!1, f q can be expanded in a Taylo
series in terms ofY, leading to the perturbation expansio
I (q)5 f q,0(X,lqN(22D)/2)1Y fq,1(X,lqN(22D)/2)1••• . For
Y→0 andc.c* , I (q) is equal togq,0( lqN(22D)/2Xa) and is
independent ofN. So we have the concentration expansi
of I (q), i.e., I (q)5gq,0$ lq@(NA /MA)cld#22D/22d(22D)%
5gq,0(jq). Expanding@gq,0(jq)#21 in powers ofq2, the
final spectrum isI (q)5k/@ l 1(jq)2# wherek is a constant,
for c.c* . For Y@1, I (q) reduces to
gqS NA

MA
cNdy21l d1@dy2d~22D !/2#@~n22!D2d~n21!#/@nD2d~n21!~22D !/2#nn

@dy2d~22D !/2#/@nD2d~n21!~22D !/2# ,

qNyl 11@y2~22D !/2#@~n22!D2d~n21!#/@nD2d~n21!~22D !/2#nn
@y2~22D !/2#/@nD2d~n21!~22D !/2#D .
an
on-
le

res-
ly-

a-
C

ec-
For c.c* , I (q) is N independent, the structure dynam
factor is reduced toI (q)5gq

.@(qj)12dy/y#.

IV. CONCLUSION

In conclusion, we have developed a general scaling r
tion of scaling theory of the self-avoidance crumpled me
brane. The method of obtaining the scaling relation of
radius of gyration relies on the possibility of introducing t
averaged square distance. Furthermore, we have shown
the scaling relation of the osmotic pressure, radius of gy
tion and screening length at finite concentration can be
tained. The above properties in low concentration can
a-
-
e

ow
-

b-
e

calculated by using the RG method. Our method provides
easy way to investigate the thermodynamic scaling relati
ship. The high concentration power law form is obtainab
rather than using the RG method, for example, osmotic p
sure. Further application of this method to the charged po
merized membrane is under investigation.
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